\[\begin{align} q_{j2} &= \frac{\sigma_{j1}^{2}}{\sigma_{j1}^{2} + \sigma_{\epsilon}^{2}}\tilde{q}_{j1} + \frac{\sigma_{\epsilon}^{2}}{\sigma_{j1}^{2} + \sigma_{\epsilon}^{2}}q_{j1} \\\ \sigma_{j2}^{2} &= \frac{1}{\frac{1}{\sigma_{j1}^{2}} + \frac{1}{\sigma_{\epsilon}^{2}}}\end{align}\]
Generalizing to \(N_{j}(t)\) periods, we have:
\[\begin{align} q_{jt} &= \frac{\sigma_{j1}^{2}}{N_{j}(t) \sigma_{j1}^{2} + \sigma_{\epsilon}^{2}}\sum_{s=1}^{t-1}\tilde{q}_{js}d_{js} + \frac{\sigma_{\epsilon}^{2}}{N_{j}(t) \sigma_{j1}^{2} + \sigma_{\epsilon}^{2}}q_{j1} \\\ \sigma_{jt}^{2} &= \frac{1}{\frac{1}{\sigma_{j1}^{2}} + N_{j}(t) \frac{1}{\sigma_{\epsilon}^{2}}},\end{align}\]
where \(N_{j}(t)\) denotes the number of signals received up to time \(t\), and \(d_{js}\) is a dummy variable that equals 1 if a signal is received for product \(j\) at time \(s\) and 0 otherwise.
\[V(j, t | I_{t}) = U(j,t | I_{t}) + \beta EV(I_{t+1} | I_{t}, j),\] where
\[\begin{align} V_{nt}^{*} &= (q_{nt} - p_{nt}) - (q_{ot} - p_{ot}) + (e_{nt}-e_{ot}) + \beta (EV(I_{t+1} | I_{t}, n) - EV(I_{t_1}|I_{t},o) \\\ &=(q_{nt} - p_{nt}) - (q_{ot} - p_{ot}) + (e_{nt}-e_{ot}) + G_{t}.\end{align}\]
\[EV(I_{T} | I_{T-1}, j) = E_{T-1} \max \{ E[U(1, T) | I_{T}], ..., E[U(J, T) | I_{T}] \},\]
\[EV(I_{T} | I_{T-1}, j) = E_{T-1} \max \{E[U(1, T) | I_{T}], ..., E[U(J, T) | I_{T}] \}\]